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Abstract
Understanding tailings properties at high spatial resolutions is needed for many geotechnical analyses. While tailings prop-

erties can be characterized using undisturbed samples and in situ tests, the current methods face limitations regarding ad-
equate spatial resolution and comprehensive property assessment. This study explores the use of hyperspectral sensing and
convolutional neural networks for the simultaneous prediction of 12 tailings properties, including percent sand, silt, clay,
fines content, solids content, gravimetric moisture content, volumetric moisture content, saturation, void ratio, porosity, to-
tal density, and dry density. Tailings from a precious metal mine were used to prepare samples with diverse properties and
hyperspectral data were captured. The tailings-hyperspectral dataset was then split into training and testing subsets, a con-
volutional neural network was optimized and trained, and the model’s performance was assessed using the testing data. The
prediction of particle size distribution metrics and moisture metrics have root mean squared errors below 8% with coefficients
of determinations above 0.95. Predictions of void ratio, porosity, total density, and dry density have poorer performance than
other properties. However, density predictions have lower errors for samples with high saturation. Results show promise for
the rapid characterization of tailings properties using hyperspectral data.
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Résumé
La compréhension des propriétés des résidus à des résolutions spatiales élevées est nécessaire pour de nombreuses analyses

géotechniques. Bien que les propriétés des résidus puissent être caractérisées à l’aide d’échantillons non perturbés et de tests
in situ, les méthodes actuelles rencontrent des limitations en termes de résolution spatiale ad. Cette étude explore l’utilisation
de la télédétection hyperspectrale et des réseaux neuronaux convolutifs pour la prédiction simultanée de douze propriétés des
résidus, incluant le pourcentage de sable, de limon, d’argile, la teneur en fines, la teneur en solides, la teneur en humidité
gravimétrique, la teneur en humidité volumétrique, la saturation, le rapport de vide, la porosité, la densité totale et la densité
sèche. Les résidus d’une mine de métaux précieux ont été utilisés pour préparer des échantillons aux propriétés variées et
des données hyperspectrales ont été capturées. Le jeu de données résidus-hyperspectral a ensuite été divisé en sous-ensembles
d’entraînement et de test, un réseau neuronal convolutif a été optimisé et entraîné, et la performance du modèle a été éval-
uée en utilisant les données de test. La prédiction des mesures de distribution granulométrique et des mesures d’humidité a
des erreurs quadratiques moyennes inférieures à 8% avec des coefficients de détermination supérieurs à 0,95. Les prévisions
du rapport des vides, de la porosité, de la densité totale et de la densité sèche ont un rendement inférieur à celui des autres
propriétés. Cependant, les prédictions de densité présentent des erreurs plus faibles pour les échantillons avec une satura-
tion élevée. Les résultats montrent un potentiel pour la caractérisation rapide des propriétés des résidus à l’aide de données
hyperspectrales.

Mots-clés : réseaux neuronaux convolutifs, propriétés du sol, spectroscopie des sols, spectroscopie de réflectance, propriétés
des résidus miniers

1. Introduction
Mineral commodities are essential to modern society and

are an important part of achieving United Nations Sustain-
able Development Goals (UNDP and UN Environment 2018).
Tailings are the byproduct of mineral commodity extraction
and consist of a slurry mixture of ground rock, water, and

chemical reagents (Oberle et al. 2020). Tailings are commonly
stored in surface impoundments called tailings storage fa-
cilities (TSFs) that require large spatial extents (Vick 1990;
Werner et al. 2020), with the largest facilities designed to
store more than 1 billion m3 of tailings (Oberle et al. 2020).
In 2016, an estimated 8.8 billion tonnes of tailings were
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produced (Oberle et al. 2020), and the volume of waste mate-
rial per unit of commodity is generally increasing due to de-
creasing ore grades (Mudd 2007, 2010). TSFs can pose a level
of risk to downstream stakeholders and environments and
recent failures have highlighted the complexities of TSF de-
sign (Morgenstern et al. 2016; Robertson et al. 2019; Williams
2021). In response to these failures, the Global Tailings Re-
view (GTR) released the Global Industry Standard on Tailings
Management to provide guidance on tailings management
that outlines the need for ongoing characterization of tailings
properties (GTR 2020; ICMM 2021). However, the scale of TSFs
can make tailings characterization difficult at the resolutions
needed for identification of features that impact physical and
chemical stability.

Tailings properties help inform geotechnical and geochem-
ical analyses and include the particle size distribution (PSD)
of tailings, moisture content, void ratio, and density. The PSD
of tailings influences shear strength, hydraulic conductivity,
volume change characteristics, dry density, and beach angle,
and can inform geochemical and rheological characteriza-
tion of the material (Morrison 2022). Tailings moisture con-
tent influences hydraulic conductivity, shear strength, com-
paction behavior, and acid generation potential (Morrison
2022). Geotechnical stability is improved at saturation lev-
els below approximately 80% (Rodríguez et al. 2021) and
oxygen diffusion decreases exponentially at saturation lev-
els above approximately 85%, generally corresponding with
a reduction of acid generation in sulfide tailings (Aachib et
al. 2004). Parameters that describe void space, such as void
ratio and porosity, can be used in consolidation modeling,
can help inform tailings liquefaction potential, and provides
information on potential water recovery (Jefferies and Been
2016; Morrison 2022). Tailings density is important for esti-
mating hydraulic conductivity, potential water recovery, and
TSF storage capacity over time (Agapito and Bareither 2018;
Morrison 2022). Characterization of these properties can in-
clude in situ and laboratory testing.

Sampling methods for laboratory characterization are clas-
sified as either disturbed or undisturbed. Disturbed samples
are retrieved in bulk samples that do not preserve the in
situ tailings condition and are used for characterizing soil
properties that are not a function of volume or fabric, such
as PSD and gravimetric moisture content. Undisturbed sam-
ples can be used to characterize tailings saturation, void ra-
tio, porosity, and density and represent a point measure-
ment. However, obtaining enough samples for adequate res-
olution of tailings properties throughout a TSF is usually
not feasible. Additionally, undisturbed samples are generally
only obtained for fine grained soils unless specialty meth-
ods such as ground freezing are used (Wride et al. 2000a,
2000b) and obtaining high-quality samples may not always
be feasible. Undisturbed samples are commonly retrieved us-
ing thin-walled tube sampling methods (ASTM International
2015) and while some level of disturbance is inherent, undis-
turbed samples can be high quality providing proper sam-
pling procedures (Di Buò et al. 2018).

The standard penetration test (SPT) and piezocone penetra-
tion test (CPTu) are common in situ methods for characteriz-
ing tailings behavior. The SPT requires drilling to depth be-

fore the resistance of soil to penetration is measured (ASTM
International 2022). The resistance measured by the SPT is
reported as the N-value (blows/foot), which can be used to
make correlations with soil behavior. However, the process of
drilling can disturb the tailings, creating reduced repeatabil-
ity (Mayne et al. 2009; Morrison 2022). The CPTu collects near
continuous cone tip resistance, sleeve friction, and pore wa-
ter pressure in the tailings profile and can include geophysi-
cal tests such as seismic cone penetration testing (Tschuschke
et al. 2020). Data collected from the CPTu are empirically re-
lated to soil behavior type (Robertson 2016), which gener-
ally correlates with Unified Soil Classification System (USCS)
classes (Molle 2005). Interpretations of CPTu data may not
be appropriate for all types of materials and interpretations
cannot be made for tailings or soils with microstructure
(Robertson 2016). Additionally, the CPTu does not directly
characterize all geotechnically relevant tailings properties in-
cluding percent sand, silt, clay, fines content, solids content,
moisture content, saturation, void ratio, and porosity.

An alternate method for material characterization, which
has gained attention in recent literature, involves hyperspec-
tral sensing for the prediction of soil and tailings properties.
Hyperspectral data can be captured on disturbed or undis-
turbed samples in either laboratory or field settings (Hedley
et al. 2015; Cho et al. 2017; Pei et al. 2018; Riese and Keller
2019; Tsakiridis et al. 2020; Entezari et al. 2022) and contains
information on the reflectance of a material at various wave-
lengths in the visible, near-infrared, and short-wave-infrared
portions of the electromagnetic spectrum. Machine learning
models have shown promise for the prediction of soil texture
using laboratory hyperspectral data (Riese and Keller 2019;
Tsakiridis et al. 2020). Other studies have shown promise for
the use of push probe-based hyperspectral sensing for the es-
timation of soil texture and in situ moisture content for near
surface agricultural soils (Cho et al. 2017; Pei et al. 2018). Ad-
ditionally, hyperspectral sensing has been used for the pre-
diction of oil sands tailings solids content, fines content, and
water content on samples tested ex situ (Entezari et al. 2022).

Several modeling procedures represent the state-of-art for
predicting soil properties from hyperspectral data includ-
ing the partial least squares regression algorithm (Sjöström
et al. 1983), the Cubist algorithm (Quinlan 1992, 1993), the
support vector regression algorithm (Drucker et al. 1996),
the spectrum-based learner (Ramirez-Lopez et al. 2013), and
1D convolutional neural networks (CNNs) (Veres et al. 2015).
Tsakiridis et al. (2020) compared the performance of these
modeling procedures for the prediction of soil properties
from hyperspectral data and demonstrated that 1D CNNs out-
perform other machine learning procedures. While hyper-
spectral sensing and machine learning have shown promise
for the prediction of PSD and moisture content, less is under-
stood on how hyperspectral data may be used to predict other
geotechnically relevant tailings properties including satura-
tion, void ratio, porosity, and density.

The objective of this study was to collect hyperspectral
data for tailings with a range of properties and assess
how hyperspectral data and CNNs can be used to predict
geotechnically relevant tailings properties. Tailings from a
gold, silver, lead, and zinc producing mine were processed to
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Fig. 1. Flowchart displaying general procedures associated with material processing, test specimen preparation, hyperspectral
data processing, and machine learning.

obtain 300 test specimens with unique PSDs, moisture con-
tents, and densities. Hyperspectral data were collected on all
test specimens in the laboratory using a handheld spectrom-
eter. Specimen properties and hyperspectral data were com-
piled into a dataset (Bindner et al. 2025), then separated into
training and testing datasets for machine learning. A 1D CNN
was cross validated, trained, and tested to assess the use of
hyperspectral data for the prediction of tailings properties in-
cluding percent sand, percent silt, percent clay, fines content,
solids content, gravimetric and volumetric moisture content,
degree of saturation, void ratio, porosity, total density, and
dry density.

2. Methods and materials
The sample preparation, hyperspectral sensing, and ma-

chine learning procedures are outlined in Fig. 1. A whole
tailings sample was processed to artificially prepare 300 test
specimens with a range of PSDs, moisture conditions, and
densities and a spectrometer was used to collect hyperspec-
tral data for each test specimen. The hyperspectral data
(Bindner et al. 2025) were then processed and spilt into train-
ing and testing data to cross validate, train, and test a CNN
for the prediction of tailings properties. Each step outlined
in Fig. 1 is described in detail in the sections below.

2.1. Test specimens
A whole tailings sample from a gold, silver, lead, and zinc

producing mine was processed and used to prepare 300 test
specimens with varying geotechnical properties including
variable percent sand, percent silt, percent clay-sized parti-
cles, fines content, solids content, water content, saturation,
void ratio, porosity, and density. The properties of the whole
tailings sample are outlined in Table 1. Plasticity testing was
used to determine the whole tailings liquid limit and plastic-

ity index (ASTM International 2017b). Mechanical sieve anal-
ysis was used to determine the PSD for particles larger than
75 μm (ASTM International 2017c) and the whole tailings was
classified according to the USCS (ASTM International 2017a).
Sedimentation analysis was performed to determine the dis-
tribution of particles ranging in diameter from 2 to 63 μm
using the PARIO Soil Particle Analyzer (mass fraction detection
error of ±0.005 g/g) (METER Group 2017). The standard Proc-
tor compaction test was used to determine the maximum dry
density and optimum water content according to ASTM Inter-
national (2021). Specific gravity of solids (Gs) was determined
using the American Society for Testing and Materials (ASTM)
standard D854 (ASTM International 2023). Quantitative X-ray
diffraction was performed to determine mineralogical com-
position of the whole tailings.

Sieving, sedimentation, and decantation were used to sepa-
rate the whole tailings sample into sub-samples with varying
PSDs (referred to as tailings sub-samples). The whole tailings
sample was first dried, then clods and agglomerates were dis-
aggregated using a pestle and mortar before processing the
tailings over the No. 200 sieve (0.075 mm). The material re-
tained on the No. 200 sieve was separated into three groups,
each of which was washed over the No. 200 sieve for differ-
ent durations to obtain sand tailings sub-samples with vary-
ing fines contents. The material passing the No. 200 sieve was
separated into three groups, mixed with water, subjected to
variable-duration sedimentation, and then decantated to ob-
tain tailings sub-samples with various silt and clay contents.
The PSD for each of the six tailings sub-sample was deter-
mined using the PARIO Soil Particle Analyzer (METER Group
2017).

Portions of tailings sub-samples were combined using
unique mass ratios to assemble 100 specimens with different
PSDs (PSD specimens). The PSD of each PSD specimen was de-
termined by recording the mass of each tailings sub-sample
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Table 1. Material properties of the whole tailings sample.

Method Property Sample value

ASTM D4318
Liquid limit, LL (%) 21

Plasticity index, PI (%) 1

ASTM D6913

Percent gravel (4.75–76.2 mm) 0

Percent sand (75 μm to 4.75 mm) 46

Percent fines (<75 μm) 54

ASTM D2487 USCS classification ML

METER PARIO Plus
Percent silt (75–2 μm) 47

Percent clay (<2 μm) 8

ASTM D698
Optimum water content, wopt (%) 12

Maximum dry density, ρd (Mg/m3) 1.85

ASTM D854 Specific gravity of solids, Gs 2.62

X-ray diffraction (%
composition)

Quartz 23

Potassium feldspar 27

Calcite 4

Dolomite 4

Siderite <0.5

Magnetite 1

Pyrite 7

Kaolinite 0.5

Chlorite 0.5

Illite/mica 31

Mixed-layered illite/smectite 2

Percent illite layers in illite/smectite 10

added to a PSD specimen, then calculating a weighted aver-
age of particle sizes by mass. Although the distribution of par-
ticle sizes of each PSD specimen was not directly measured,
the calculated PSD is assumed to be generally representative
of the measured PSD in this study. The PSD curves for PSD
specimens and the whole tailings sample (original sample)
are shown in Fig. 2. The mean particle diameter (D50) of the
whole tailings was 0.062 mm; the finest PSD specimen had a
D50 of 0.008 mm and the coarsest PSD specimen had a D50 of
0.120 mm.

Each PSD specimen was prepared to three saturation and
density conditions, resulting in a total of 300 test specimens.
Deionized water was added to each test specimen to achieve
a target saturation, and the moisture was allowed to equili-
brate for a minimum of 12 h in an airtight container. The
moisture equilibrated tailings were then compacted to a tar-
get density in a 50 mm inner diameter Petri dish (15 mm
height). The target saturation of each test specimen ranged
from 0% to 100% and the target dry density was randomly
distributed among test specimens ranging between 0.9 and
1.7 Mg/m3.

The frequency distributions of measured or calculated
properties among prepared test specimens are shown in
Fig. 3. The total mass and volume of each test specimen
were recorded, and the gravimetric moisture content was
measured according to ASTM D2216-19 (ASTM International
2019). Specimen mass, volume, and gravimetric moisture
content were used to calculate volumetric moisture content,

solids content, saturation, void ratio, porosity, total density,
and dry density via phase relationships. Sand, silt, clay, and
fines content ranged from 0% to 99%, 2% to 84%, 1% to 20%,
and 3% to 100%, respectively (Figs. 3a–3d). Solids content
ranged from 65% to 100% (Fig. 3e), covering a portion of
the tailings continuum including thickened, paste, and fil-
tered tailings (KCB 2017). Gravimetric and volumetric mois-
ture content ranged from 0% to 55% and 0% to 59%, respec-
tively (Figs. 3f and 3g) and saturation ranged from 0% to 100%
(Fig. 3h). Test specimen void ratios ranged from 0.5 to 2.0 (Fig.
3i) and porosity ranged from 0.34 to 0.67 (Fig. 3j). For gold,
silver, lead, and zinc tailings, studies have reported the in-
place void ratio of slimes ranging from 0.6 to 1.0 (Kealy et
al. 1974; Mabes et al. 1977; Blight and Steffen 1979); 63% of
test specimens had void ratios in this range. Measured total
density ranged from 0.94 to 2.09 Mg/m3 (Fig. 3k) and dry den-
sity from 0.86 to 1.72 Mg/m3 (Fig. 3l). Kealy et al. (1974) and
Mabes et al. (1977) reported the dry density for lead and zinc
slimes to range from 1.28 to 1.81 Mg/m3, respectively; 71%
of test specimens had dry densities in this range. Test spec-
imens with large void ratios and low dry densities that con-
tained clods were prepared to simulate conveyor deposition
of filtered tailings.

2.2. Hyperspectral sensing
Hyperspectral scans were captured immediately after test

specimen preparation. An ASD TerraSpec Halo Mineral Identifier
(spectrometer) was used to capture reflectance data from 350
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Fig. 2. Particle size distribution (PSD) of original tailings sample and PSD specimens. The 1st, 17th, 33rd, 66th, 83rd, and 99th
percentiles are shown for the 100 PSD specimens. Delineations for sand, silt, and clay-sized particles are shown as solid vertical
lines. Red dashed lines are the average upper and lower tailings bounds of mine tailings PSD from literature (after Gorakhki
et al. 2019, adapted from Hamade 2017).

Fig. 3. Distribution of properties among test specimens including (a) percent sand, (b) percent silt, (c) percent clay, (d) fines
content, (e) solids content, (f) gravimetric moisture content, (g) volumetric moisture content, (h) saturation, (i) void ratio, (j)
porosity, (k) total density, and (l) dry density.

to 2500 nm with a wavelength reproducibility of ±0.1 nm
(Malvern Panalytical 2018). A prepared test specimen and
the spectrometer are shown in Fig. 4. The spectrometer con-

tains three hyperspectral detector arrays with a resolution of
3 nm for the visible and near-infrared (VNIR) detector (350–
1000 nm), 9.8 nm for the first short wave infrared (SWIR)
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Fig. 4. Images of (a) a prepared test specimen, (b) the TerraSpec Halo spectrometer, and (c) close up of the spectrometer in
contact with a test specimen.

detector (1001–1800 nm), and 8.1 nm for the second SWIR de-
tector (1801–2500 nm) (Malvern Panalytical 2018). The spec-
trometer has an internal halogen bulb for sample illumina-
tion and contains 386 spectral pixels, where each spectral
pixel corresponds to a wavelength. The viewing window of
the spectrometer was placed in direct contact with the tail-
ings and hyperspectral data were captured at two approxi-
mately 0.8 cm2 locations for each test specimen. Hyperspec-
tral data from the two locations were compared for similar-
ity, then averaged to obtain one spectral signal for each test
specimen.

2.3. Machine learning
To achieve similar resolutions for all hyperspectral detec-

tors and reduce hyperspectral data dimensionality, the VNIR
data were downsampled 3:1 to achieve a spectral resolution
of 9 nm from 350 to 1000 nm, resulting in reflectance re-
ported at a total of 241 wavelengths. The discrete wavelet
transform (DWT), which has been shown to improve perfor-
mance in hyperspectral classification problems (Anand et al.
2021; Bruce et al. 2022), was used to further reduce hyperspec-
tral dimensionality while preserving important spectral fea-
tures. The PyWavelets package was used to perform the DWT
using the Haar wavelet (Lee et al. 2019). The DWT returns an
approximation of the original spectrum that is comprised of
wavelet decomposition coefficients that describe the original
signal. The DWT yields a compressed signal with a downsam-
pling of 2:1, resulting in 121 features.

The standard scaler transform was applied to the com-
pressed signal to standardize the hyperspectral data by re-
moving the mean and scaling to unit variance (Pedregosa
et al. 2011). Scaling data to have a mean of zero and unit
variance has been linked with improved model conver-
gence and better compatibility with some objective functions
(Pedregosa et al. 2011; Dangeti 2017). Tailings properties were
normalized between 0 and 1 to ensure all properties had sim-
ilar magnitudes during training and testing.

Training and testing datasets were determined using con-
ditioned Latin Hypercube Sampling (cLHS) (Minasny and
McBratney 2006) informed by compressed and scaled hyper-
spectral data. The cLHS algorithm was used to approximate

the multivariate distribution of hyperspectral data in both
the training and testing datasets, which has been associated
with improved model performance (Althnian et al. 2021). The
cLHS algorithm was run for 100 000 iterations to extract 20%
of the data for testing (n = 60), leaving 80% of the data for
training (n = 240). The distribution of test specimen prop-
erties in the training and testing datasets from cLHS is dis-
played in Fig. 5. Results indicate that sampling of testing data
using cLHS based on hyperspectral data captures the multi-
variate distribution of test specimen properties. For each test
specimen attribute, the distribution of testing data is within
the limits of training data and has a similar distribution of
properties.

K-fold cross validation was used to select the CNN hyper-
parameters (viz. number of layers, number of neurons, ac-
tivation function, learning rate, etc.). Cross validation helps
to generalize a model, since hyperparameter optimization is
informed by multiple validation datasets. Five-folds were se-
lected for cross validation resulting in 20% of the training
data contained in each fold (n = 48).

To ensure each fold had a similar range and distribution of
hyperspectral reflectance data, the fuzzy c-means algorithm
(FCM) and elbow method were used (Bezdek et al. 1984). The
FCM was first used to cluster similar hyperspectral spectra
together for n = 2 to n = 10 clusters. The within-cluster sum
of squares (WCSS) was then calculated and plotted for each
n-number of clusters. The WCSS decreases as the number of
clusters increases, since less diverse data are contained with
each cluster. The point of diminishing reduction in WCSS (viz.
the plot elbow) was identified at three clusters and the FCM
algorithm was executed a final time to cluster hyperspectral
data into three groups. The hyperspectral spectra associated
with each of the three clusters, and corresponding test spec-
imen data, were then randomly reassigned to five groups to
be used for 5-fold cross validation.

The 5-fold training data were then used to optimize a 1D
CNN, using a different fold as validation data for each opti-
mization. The Keras deep learning application program inter-
face running on the TensorFlow machine learning platform
was used to construct the CNN in Python 3 (van Rossum and
Drake 2009; Abadi et al. 2015; Chollet 2015). The optimized
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Fig. 5. Boxplot displaying tailings attributes for test specimens in the training and testing data.

CNN for each validation set was then used to inform the final
model hyperparameters.

The optimized hyperparameters and final model architec-
ture are shown in Fig. 6. The input layer consists of a one-
dimensional array containing the 121 wavelength approxi-
mations from the DWT. The input data are then passed to
the first convolutional layer with 84 filters (neurons), where
general patterns in the hyperspectral data are identified. The
max pooling layer then reduces the spatial dimensionality
of the output from convolutional layer one. This is done to
lessen the computational load on the next layer. This pro-
cess is repeated for convolutional layers two and three which
both have 64 filters. As data pass through the neural net-
work, more detailed patters in the hyperspectral data are rec-
ognized. The output of convolution three is then flattened
and passed to the dense, or fully connected, layers for cor-
relation between the target values and the convolved input
data. The output of the model contains 12 features, each
of which is a floating-point value representing the 12 soil
properties predicted in this study. The optimized CNN was
trained using the entire training dataset. The testing dataset
was used to assess the performance of the optimized and
trained CNN. The root mean squared error (RMSE), mean bias
error, coefficient of determination (R2), and the cumulative
distribution function were used to assess the performance
of the CNN for the prediction of 12 tailings properties: per-
cent sand, percent silt, percent clay, fines content, solids con-
tent, gravimetric moisture content, volumetric moisture con-
tent, saturation, void ratio, porosity, total density, and dry
density.

3. Results

3.1. Hyperspectral data
The range of hyperspectral signals for test specimens is

shown in Fig. 7. The relative reflectance represents the mea-
sured intensity of radiation reflected from the test specimen
surface and ranges from 0 to 1, where 0 is complete absorp-
tion and 1 is complete reflectance. The range of relative in-

tensity for the test specimens generally ranges from 0 to 0.55.
Hyperspectral signals with absorptive features (local minima)
at 1450 and 1920 nm correspond to the presence of water
(Jacquemoud and Ustin 2003; van der Meer 2004) and have
lower relative reflectance at all wavelengths. The presence of
a pronounced absorptive feature at 2200 nm is attributed to
the presence of clay minerals containing hydroxyl groups in-
cluding illite, chlorite, and kaolinite (Laukamp et al. 2021).
The absorptive feature at 2200 nm is less pronounced for wet-
ter samples, likely due to the presence of water masking the
hydroxyl absorption feature (Demattê et al. 2010).

3.2. Machine learning
Tailings property prediction accuracies using the trained

CNN are shown in Fig. 8. Predictions of sand, silt, clay, and
fines content capture the trend for various PSDs, with R2 val-
ues greater than 0.94 and RMSEs of 5.4%, 5.1%, 1.2%, and 5.3%,
respectively (Figs. 8a–8d). Predictions of solids content have a
high R2 of 0.97 and a low RMSE of 1.4% (Fig. 8e). Properties
describing tailings moisture, including gravimetric moisture
content, volumetric moisture content, and degree of satura-
tion, have a strong relationship between predicted and mea-
sured properties with RMSEs of 2.2%, 2.8%, and 8.3%, respec-
tively, and R2 values greater than 0.94 (Figs. 8f–8h). Overall,
the trend of void ratio and porosity is captured by the CNN
predictions but have low R2 values of 0.20 and 0.27 and RM-
SEs of 0.23 and 0.05, respectively (Figs. 8i and 8j). Predictions
of total and dry density resulted in RMSEs of 0.16 and 0.14
Mg/m3 and R2 values of 0.65 and 0.28, respectively (Figs. 8k
and 8l).

Histograms of errors for each predicted tailings property
are shown in Fig. 9. Positive errors represent the overpredic-
tion of a given property by the CNN and negative errors rep-
resent underpredictions. The red line on each plot represents
the kernel density estimate (KDE), which uses a continuous
density curve to represent the general shape of the error his-
tograms. The shape of the KDE curves appear to have near
normal distributions with some having negative or positive
skewness.
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Fig. 6. Architecture of the optimized convolutional neural network informed by cross validation. Values in parenthesis repre-
sent the output shape of each layer.

Fig. 7. Percentile ranges for hyperspectral signals including the 1st to 99th percentile, 17th to 83rd percentile, and 33rd to
66th percentile.

For some tailings properties, performance of the CNN is
observed to vary with different levels of saturation (Table 2).
Predictions of percent sand, silt, and clay, fines content, solids
content, gravimetric water content, and volumetric water
content perform similarly for both high and low saturation
conditions. However, for saturation, void ratio, porosity, to-
tal density, and dry density, lower errors are observed for
samples with saturation above 50%. Predictions for samples
with saturations greater than 50% have substantially greater
R2 values (0.76–0.80) than those with saturations less than
50% (0.09–0.18) for void ratio, porosity, total density, and dry
density. Additionally, RMSE values are substantially reduced
at saturations greater than 50% for predictions of saturation,
void ratio, porosity, total density, and dry density.

The results from Shapley Additive Explanations (SHAP)
analysis are shown in Fig. 10, in which SHAP uses a game
theory approach to explain the importance of various in-
put features in machine learning models (Lundberg and Lee
2017). Greater absolute SHAP scores at a given wavelength
correspond with greater influence on the prediction of a
given property. The prediction of soil properties from the
CNN appears to be most influenced by wavelengths between
2100 and 2500 nm. Wavelengths from 2200 to 2350 nm ap-
pear to strongly influence the prediction of percent sand, silt,
clay, and fines content. For the prediction of solids content,
gravimetric moisture content, volumetric moisture content,
and degree of saturation, most wavelengths appear to have
moderate influence on the prediction of these properties.

C
an

. G
eo

te
ch

. J
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

Jo
se

ph
 B

in
dn

er
 o

n 
12

/1
2/

25
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cgj-2024-0656


Canadian Science Publishing

Can. Geotech. J. 62: 1–15 (2025) | dx.doi.org/10.1139/cgj-2024-0656 9

Fig. 8. Predicted values from the trained convolutional neural network model plotted against measured values for (a) percent
sand, (b) percent silt, (c) percent clay, (d) fines content, (e) solids content, (f) gravimetric moisture content, (g) volumetric moisture
content, (h) degree of saturation, (i) void ratio, (j) porosity, (k) total density, and (l) dry density. RMSE, root mean squared error;
MBE, mean bias error.
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Fig. 9. Histograms of convolutional neural network prediction errors and the kernel density estimate of errors for (a) percent
sand, (b) percent silt, (c) percent clay, (d) fines content, (e) solids content, (f) gravimetric moisture content, (g) volumetric moisture
content, (h) degree of saturation, (i) void ratio, (j) porosity, (k) total density, and (l) dry density.

Table 2. Convolutional neural network performance metrics for saturation, void ratio, porosity, total density, and dry density
for test specimens with saturations from 0% to 50% and 50% to 100%.

Saturation (%) Void ratio Porosity Total density (Mg/m3) Dry density (Mg/m3)

0%–50% saturation

RMSE 9.73 0.29 0.07 0.19 0.18

MBE 3.04 −0.06 −0.02 0.05 0.05

R2 0.78 0.09 0.11 0.18 0.11

50%–100%
saturation

RMSE 5.64 0.10 0.03 0.07 0.07

MBE 0.71 0.00 0.00 0.00 0.00

R2 0.79 0.77 0.76 0.80 0.80

Note: RMSE, root mean squared error; MBE, mean bias error.

Finally, the predictions of void ratio, porosity, total density,
and dry density appear to be strongly influenced by wave-
lengths near 600, 750, 900, 1400, and 2200 nm.

4. Discussion
The CNN model results demonstrate that the estimation

of tailings properties related to PSD, moisture, and density
using hyperspectral sensing shows promise for tailings char-
acterization. Taskiridis et al. (2020) used hyperspectral re-
flectance measured for approximately 18 000 natural soils
across the European Union to predict percent sand, silt, and
clay, and achieved RMSEs of 11.95%, 9.33%, and 4.80%, re-
spectively. CNN model predictions of tailings percent sand,
silt, and clay in this study have lower RMSEs compared to
Taskiridis et al. (2020), which may be associated with reduced

mineralogical complexity of tailings samples since tailings
test specimens were prepared from a single whole tailings.
The coefficients of determination for predicted percent sand,
silt, and clay are greater than 0.95 demonstrating the ability
of the CNN model to capture variability in PSD. Entezari et al.
(2022) used hyperspectral data and machine learning to pre-
dict percent fines, solids content, and gravimetric moisture
content of oil-sands tailings which resulted in errors similar
to this study.

The CNN model has high predictive accuracy for both
gravimetric and volumetric moisture content. High perfor-
mance of moisture content predictions is associated with the
strong correlation between soil moisture and spectral fea-
tures (Diao et al. 2021). While the use of hyperspectral sensing
for the prediction of tailings saturation has not previously
been explored, results demonstrate that hyperspectral data
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Fig. 10. Cumulative absolute sum of Shapley Additive Explanations (SHAP) values for the convolutional neural network input
wavelengths. Each color represents a different soil property, and the solid black line represents the absolute sum of SHAP
values for all predicted soil properties.

and CNNs show promise for the rapid measurement of tail-
ings saturation.

Predictions of void ratio, porosity, total density, and dry
density capture the general trend of tailings property vari-
ability. However, these predictions have low R2 values com-
pared to predictions of PSD and moisture content. Studies
which have used hyperspectral data to predict total density
have achieved results comparable to this study (Moreira et
al. 2009; Katuwal et al. 2020; Haghi et al. 2021). Hyperspec-
tral sensing of density conditions may be sensitive to sam-
ple preparation, given that the information depth of VNIR
and SWIR soil spectroscopy is generally within the top 1 mm
of the soil surface (Norouzi et al. 2021). Additionally, results
from this study indicate density and saturation predictions
have lower errors at high levels of saturation including at the
critical saturation values associated with geotechnical and
geochemical stability. Further studies are needed to identify
contributing factors of improved performance at high satu-
rations.

The use of laboratory hyperspectral data for the rapid char-
acterization of tailings may benefit practitioners by provid-
ing near real-time estimates of geotechnical properties and
reducing the time and labor associated with traditional lab-
oratory testing. This has been demonstrated for the predic-
tion of oil-sands tailings properties by Entezari et al. (2018,
2019, 2022, 2024). The application of this methodology, how-
ever, requires that the model is trained on data that prop-
erly represent the type and range of materials that the model
is intended to be applied to. Practitioners should consider
the investment required to develop similar models for their
applications. Although the creation of these models can re-
quire front-end investment, studies show promise for the
use of transfer learning to leverage models developed on

large datasets to supplement the calibration of new mod-
els for relatively small datasets (Liu et al. 2018). Future stud-
ies should consider how transfer learning can be applied
to similar methodologies to add efficiencies to the training
process.

The use of hyperspectral sensing for the prediction of tail-
ings properties also has potential for the high-speed char-
acterization of tailings properties in the field. Studies have
demonstrated the use of visible light cameras on CPTu
probes to better characterize soil profiles (Ventola et al. 2020;
Entezari et al. 2024) and hyperspectral sensing has been used
in subsurface probes for characterization of agricultural soil
properties (Cho et al. 2017; Pei et al. 2018; Entezari et al.
2024). Additionally, tailings property predictive accuracy is
expected to improve when data from multiple sensors are
used as model inputs, such as data from hyperspectral sens-
ing and the CPTu (tip resistance, sleeve friction, pore pres-
sure, etc.) (Pei et al. 2018; Riese and Keller 2019; Entezari
et al. 2024). Future studies should explore the use of probe
based hyperspectral sensing for the characterization of tail-
ings properties in situ.

While results from this study show promise for the pre-
diction of multiple tailings properties, the test specimens in
this study did not include conventional slurry tailings. In ad-
dition, the tailings used in this study were from a single mine
site and additional studies are needed to understand how this
methodology applies to tailings from other mining facilities.
The geotechnic laboratory reference methods in this study
were selected for their common use in practice and stan-
dardized procedures, however, there may be some level of ex-
pected error in the measured reference values, future studies
should consider how error in reference measurements propa-
gate though model training and influence model predictions.
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Additionally, studies have demonstrated that larger datasets
can correspond with improved model performance (Prusa et
al. 2015; Zhu et al. 2016), therefore future studies should con-
sider the impact of dataset size and complexity on the predic-
tive accuracy of tailings properties. This study did not include
assessments of variability in spectral response with changes
in specific tailings properties. However, the relationship be-
tween spectral response and moisture content is well doc-
umented (Jacquemoud and Ustin 2003; van der Meer 2004;
Diao et al. 2021) and other studies have related increased
particle size with decreased reflectance in the 350–2500 nm
range for natural soils (Clark et al. 1993; Sadeghi et al. 2018).
High dry density (low void ratio and porosity) has also been
observed to correspond with lower reflectance for sandy ma-
terials (Bachman et al. 2014; Carson et al. 2015). However, this
trend may vary based on soil type (Demattê et al. 2010). Future
studies should further investigate how variations in tailings
properties directly impact spectral response.

5. Conclusions
The primary objective of this study was to assess the use

of hyperspectral sensing for the prediction of tailings prop-
erties. A tailings from a gold, silver, lead, and zinc producing
mine was processed to obtain 300 test specimens with a range
of PSDs, moisture contents, and densities. Direct-contact hy-
perspectral sensing was conducted for each specimen and
tailings properties were measured including percent sand,
percent silt, percent clay, fines content, solids content, gravi-
metric moisture content, volumetric moisture content, satu-
ration, void ratio, porosity, total density, and dry density. The
tailings hyperspectral data were partitioned into training and
testing datasets. The training dataset was used to optimize
and train a 1D CNN for the simultaneous prediction of tail-
ings properties. The testing dataset was then used to assess
the performance of the CNN. Based on results of this study,
the following conclusions are made:

1. Hyperspectral data show promise for the prediction of tail-
ings PSD parameters including percent sand, percent silt,
percent clay, and fines content. Predictions of PSD param-
eters resulted in high coefficient of determination (greater
than 0.95) and low RMSE values (5.4%, 5.1%, 1.2%, and 5.3%,
respectively). The high predictive accuracy demonstrates
the effectiveness of using CNNs and hyperspectral sensing
for prediction of tailings properties related to PSD.

2. Predictions of solids content, gravimetric water content,
volumetric water content, and saturation show promise
for the prediction of tailings moisture metrics. Solids con-
tent, gravimetric water content, and volumetric water
content predictions have high coefficients of determina-
tion (greater than 0.96) with RMSE values below 3%. Sat-
uration predictions result in a high coefficient of deter-
mination (0.95) and an RMSE near 8%. Predictions of sat-
uration were observed to have lower errors at saturations
greater than 50%, with RMSE reduced to 5.64%. (R2 of
0.79). The strong relationship between hyperspectral sig-
nals and tailings moisture metrics coupled with the high
predictive performance of the CNN demonstrates the ef-

fectiveness of using hyperspectral data for the prediction
of tailings properties associated with moisture.

3. The predictions of tailings properties related to density
including void ratio, porosity, total density, and dry den-
sity also show promise, with RMSEs of 0.23, 0.05, 0.16
Mg/m3, and 0.14 Mg/m3, respectively, and R2 values of 0.20,
0.27, 0.65, and 0.28, respectively. Predictions of void ratio,
porosity, total density, and dry density have lower errors
at saturations greater than 50%, with RMSEs reduced to
0.10, 0.03, 0.07 Mg/m3, and 0.07 Mg/m3, respectively, and
R2 values greater than 0.77.

Hyperspectral sensing and machine learning demonstrate
the potential to produce high-speed estimates of tailings
properties. The inclusion of alternate data sources is expected
to improve the predictive performance of tailings properties
using machine learning. Futures studies may consider the use
of this methodology for the prediction of tailings properties
from different mine sites and explore the use of probe based
hyperspectral sensing for tailings property prediction.
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